Matrix Equation’s Reflexive and Anti-Reflexive Solutions over Quaternions

نویسندگان

چکیده

We consider when the quaternion matrix equation AXB+CXD=E has a reflexive (or anti-reflexive) solution with respect to given generalized reflection matrix. adopt real representation method derive solutions it is solvable. Moreover, we obtain explicit expressions of least-squares solutions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

‎Finite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices

A matrix $Pintextmd{C}^{ntimes n}$ is called a generalized reflection matrix if $P^{H}=P$ and $P^{2}=I$‎. ‎An $ntimes n$‎ ‎complex matrix $A$ is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix $P$ if $A=PAP$ ($A=-PAP$)‎. ‎In this paper‎, ‎we introduce two iterative methods for solving the pair of matrix equations $AXB=C$ and $DXE=F$ over reflexiv...

متن کامل

‎finite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices

a matrix $pintextmd{c}^{ntimes n}$ is called a generalized reflection matrix if $p^{h}=p$ and $p^{2}=i$‎. ‎an $ntimes n$‎ ‎complex matrix $a$ is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix $p$ if $a=pap$ ($a=-pap$)‎. ‎in this paper‎, ‎we introduce two iterative methods for solving the pair of matrix equations $axb=c$ and $dxe=f$ over reflexiv...

متن کامل

Anti-reflexive Solutions for a Class of Matrix Equations

In this paper, the generalized anti-reflexive solution for matrix equations (BX = C , XD = E), which arise in left and right inverse eigenpairs problem, is considered. With the special properties of generalized anti-reflexive matrices, the necessary and sufficient conditions for the solvability and a general expression of the solution are obtained. Furthermore, the related optimal approximation...

متن کامل

Gradient Based Iterative Algorithm for Solving the Generalized Coupled Sylvester-transpose and Conjugate Matrix Equations over Reflexive (anti-reflexive) Matrices

Linear matrix equations play an important role in many areas, such as control theory, system theory, stability theory and some other fields of pure and applied mathematics. In the present paper, we consider the generalized coupled Sylvestertranspose and conjugate matrix equations Tν(X) = Fν , ν = 1, 2, . . . , N, where X = (X1, X2, . . . , Xp) is a group of unknown matrices and for ν = 1, 2, . ...

متن کامل

The .p;q/ Generalized Anti-reflexive Extremal Rank Solutions to a System of Matrix Equations

Let n n complex matrices P andQ be nontrivial generalized reflection matrices, i.e., P D P D P 1 ¤ In, Q DQ DQ 1 ¤ In. A complex matrix A with order n is said to be a .P;Q/ generalized anti-reflexive matrix, if PAQ D A. We in this paper mainly investigate the .P;Q/ generalized anti-reflexive maximal and minimal rank solutions to the system of matrix equation AX D B . We present necessary and su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2022

ISSN: ['0865-4824', '2226-1877']

DOI: https://doi.org/10.3390/sym15010040